A Genomic Model for Predicting the Ultraviolet Susceptibility of Viruses

Wladyslaw J. Kowalski¹, William P. Bahnfleth², Mark T. Hernandez³

¹Immune Building Systems, Inc., 575 Madison Ave., New York, NY10022, email: <u>drkowalski@ibsix.com</u> ²The Pennsylvania State University, Department of Architectural Engineering, University Park, PA 16802 ³University of Colorado, UCB 428, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive #441, Boulder, CO 80309

ABSTRACT

A mathematical model is presented to explain the ultraviolet susceptibility of viruses in terms of genomic sequences that have a high potential for photodimerization. The specific sequences with high dimerization potential include doublets of thymine (TT), thymine-cytosine (TC), cytosine (CC), and triplets composed of single purines combined with pyrimidine doublets. The complete genomes of 49 animal viruses and bacteriophages were evaluated using base-counting software to establish the frequencies of dimerizable doublets and triplets. The model also accounts for the effects of ultraviolet scattering. Constants defining the relative lethality of the four dimer types were determined via curve-fitting. A total of 70 data sets were used to represent 27 RNA viruses. A total 77 water-based UV rate constant data sets were used to represent 22 DNA viruses. Predictions are provided for dozens of viruses of importance to human health that have not previously been tested for their UV susceptibility.

INTRODUCTION

The susceptibility of viruses to ultraviolet (UV) light has traditionally been defined in terms of the UV rate constant, also called a Z value, which is the slope of the survival curve on a logarithmic scale. The UV rate constant refers to either broad range UV in the UVB/UVC spectrum (200-320 nm) or, more commonly, to narrow-band UVC near the 253.7 nm wavelength. UV susceptibility can also be defined by the UV exposure dose (fluence) required for 90% inactivation (the D₉₀ value), a more intuitive parameter that avoids the problem of defining shoulder effects and second stages in the survival curve. In this paper the UV rate constant is defined in terms of the D₉₀ value to provide an absolute indicator of UV susceptibility in the first stage of decay, and these values are thereby interchangeable. The UV rate constant, in m²/J, applicable to the first stage of decay is defined as:

$$k = \frac{-\ln(S)}{D_{g_{\theta}}} \tag{1}$$

where S = survival, fractional D = UV exposure dose (fluence), J/m² The D₉₀ value is then:

$$D_{90} = \frac{-\ln(1-0.9)}{k} = \frac{-\ln(0.1)}{k} = \frac{2.3026}{k}$$
⁽²⁾

The subject of virus UV susceptibility has been extensively studied and the processes that occur at the molecular level have been quantified to an great degree, but the complexities of these processes and prior lack of fully sequenced genomes have heretofore precluded development of a complete quantitative model of virus inactivation. The actual theoretical basis for UV susceptibility has been elucidated in the works of Setlow and Carrier (1966), Smith and Hanawalt (1969), Becker and Wang (1989), and others. This paper applies the basic model of UV inactivation as detailed in these seminal works to viral genomes from the NCBI database (NCBI 2009) and statistically evaluates the correlation with known UV D⁹⁰ values. With some enhancements of the basic model and adjustments to the parameters, a model is developed herein that provides predictions for both RNA and DNA viruses. This model also includes a new ultraviolet scattering model developed by the authors that contributes to the overall accuracy of the DNA model.

Rate Constant Determinants

Various intrinsic factors determine the sensitivity of a virus to UV exposure under any set of constant ambient conditions of temperature and humidity including physical size, molecular weight, DNA conformation, presence of chromophores, propensity for clumping, presence of repair enzymes or dark/light repair mechanisms, hydrophilic surface properties, relative index of refraction, specific spectrum of UV, G+C% content, and % of potential pyrimidine dimers.

The physical size of a virus bears no clear direct relationship with UV susceptibility. UV-induced damage to DNA is independent of molecular weight (Scholes et al 1967). Virus nucleocapsids are too thin to allow any significant chromophore protection. The specific UV spectrum has a relatively minor or insignificant effect according to most studies although some differences between LP and MP lamps have been noted (Linden et al 2007), but in this study virtually all the data is based on LP lamps. Viruses have no repair enzymes and their dark/light repair mechanisms play a minor or insignificant role. Hydrophilic surface properties and propensity for clumping are largely unknown for viruses. The DNA conformation directly impacts UV susceptibility but this model treats DNA viruses in water (B conformation) separately from RNA viruses (Aconformation). The G+C% content plays an indirect role in UV susceptibility but this factor is enveloped by the more detailed approach of analyzing genomic content addressed in this model. The relative index of refraction in the UV range is not known for viruses but a general model for UV scatter is developed and incorporated in the DNA model. The RNA model has negligible UV scattering effects due to their size parameters being so small.

The UV Scattering Model

Viruses, which are about 0.02 microns and larger, are subject to ultraviolet scattering effects due to the fact that their size is very near the wavelength of ultraviolet light. The effect of scattering is to reduce the effective irradiance to which the microbe is exposed, and it is necessary to account for this attenuation if it has a major impact on reducing the UV exposure dose. The interaction between ultraviolet wavelengths and the particle is a function of the relative size of the particle compared with the wavelength, as defined by the size parameter:

$$x = \frac{2\pi a}{\lambda} \tag{3}$$

where a = the effective radius of the particle λ = wavelength

The scattering of light is due to differences in the refractive indices between the medium and the particle (Bohren and Huffman 1983). The scattering properties of a spherical particle in any medium are defined by the complex index of refraction:

$$m = n - i\kappa \tag{4}$$

where n = real refractive index κ = imaginary refractive index (absorptive index or absorption coefficient)

The process of independent Mie scattering is also governed by the relative refractive index, defined as follows:

$$m = \frac{n_s}{n_m} \tag{5}$$

where n_s = refractive index of the particle (a microbe) n_m = refractive index of the medium (air or water) Readers may consult the references for further information on Mie theory (vandeHulst 1957, Bohren and Huffman 1983). The refractive index of microbes in visible light has been studied by several researchers but there are no studies that address the real refractive index of viruses at UV wavelengths. Water has a refractive index of $n_m = 1.4$ in the ultraviolet range. If the UV refractive index of viruses in visible light is scaled to that of water, the estimated real refractive index would be about 1.12 (Kowalski 2009). In fact, UV scattering effects are not sensitive to the choice of values within the range 1.03-1.45 and the choice of n=1.12 is reasonable. For the imaginary refractive index (the absorptive index) in the UV range no information is available. However, we can reasonably assume a value comparable to that of water, k=1.4, or any value in the range of the real refractive indices given above as they have even less overall impact than the real refractive index. These values were used as input to a Mie Scattering program (Prahl 2009) to estimate the effects of UV scattering at the wavelength of 253.7 nm.

The computed ratio of the scattering cross-section to the extinction cross-section represents the fraction of total irradiance that is scattered away (Kowalski et al 2009). The fraction of scattered UV is relatively minor for most RNA viruses, but increases sharply through the DNA virus size range, approaching a limit of about 0.68. The computed values for UV scatter are used to correct the incident UV irradiance (or D_{90} exposure value). Table 1 shows the

Virus	Туре	Diameter	UV Scatter	Virus		Diameter	UV Scatter	
		μm	Correction			μm	Correction	
Bacteriophage MS2	DNA	0.020	0.9732	B. subtilis phage SP	DNA	0.087	0.6122	
Echovirus (Parechovirus)	RNA	0.024	0.9552	Coliphage T4	DNA	0.089	0.6057	
Encephalomyocarditis virus	RNA	0.025	0.9501	Borna virus	DNA	0.090	0.6026	
Coxsackievirus	RNA	0.027	0.9391	Friend Murine Leukemia virus	DNA	0.094	0.5907	
Hepatitis A virus	RNA	0.027	0.9391	Moloney Murine Leukemia virus	RNA	0.094	0.5907	
Murine Norovirus	RNA	0.032	0.9086	Rauscher Murine Leukemia virus	RNA	0.094	0.5907	
Feline Calicivirus (FCV)	DNA	0.034	0.8955	Avian Sarcoma virus	RNA	0.098	0.5798	
Canine Calicivirus	RNA	0.037	0.8755	Influenza A virus	RNA	0.098	0.5798	
Polyomavirus	RNA	0.042	0.8389	BLV	DNA	0.099	0.5772	
Simian virus 40	RNA	0.045	0.8214	Murine Cytomegalovirus	RNA	0.104	0.5649	
Coliphage lambda	RNA	0.050	0.7889	Vesicular Stomatitis virus (VSV)	RNA	0.104	0.5649	
Coliphage T1	DNA	0.050	0.7889	Equine Herpes virus	RNA	0.105	0.5626	
Semliki Forest virus	DNA	0.061	0.7240	Avian Leukosis virus	RNA	0.107	0.5581	
Coliphage PRD1	DNA	0.062	0.7186	Coronavirus (incl SARS)	RNA	0.113	0.5457	
HP1c1 phage	DNA	0.062	0.7186	Murine sarcoma virus	RNA	0.120	0.5330	
Coliphage T7	DNA	0.063	0.7133	HIV-1	RNA	0.125	0.5249	
Mycobacterium phage D29	DNA	0.065	0.7030	Rous Sarcoma virus (RSV)	DNA	0.127	0.5218	
VEE	DNA	0.065	0.7030	Frog virus 3	RNA	0.167	0.4793	
Adenovirus Type 40	RNA	0.069	0.6835	Herpes simplex virus Type 2	RNA	0.173	0.4750	
Rabies virus	RNA	0.070	0.6788	Herpes simplex virus Type 1	RNA	0.184	0.4681	
WEE	DNA	0.070	0.6788	Pseudorabies (PRV)	DNA	0.194	0.4626	
Sindbis virus	DNA	0.075	0.6569	Newcastle Disease Virus	DNA	0.212	0.4544	
Adenovirus Type 1	RNA	0.079	0.6408	Vaccinia virus	DNA	0.307	0.4280	
Adenovirus Type 2	RNA	0.079	0.6408	Measles	DNA	0.329	0.4237	
Adenovirus Type 5	DNA	0.084	0.6224	NOTE: Virus diameters represent logmean values.				

Table 1. Virus Mean Diameters and UV Scattering Corrections

diameters of the viruses used in this study and the associated UV scatter correction factors, which are later applied to the raw D₉₀ values shown in Tables 3 and 4. Virus diameters were obtained from various sources (i.e. Kowalski 2006). Diameters are logmean values of the smallest dimension or logmean values of ovoid envelopes. For more detailed information on the computation of UV scattering effects see Kowalski (2009).

The Genomic Model

The effect of base composition can impact the intrinsic sensitivity of DNA to UV irradiation and the specific sequence of adjacent base pairs, as well as the frequency of thymines, are major, if not primary, determinants of UV sensitivity. The disruption of normal DNA processes occurs as the result of the formation of photodimers, but not all photoproducts appear with the same frequency. Purines are approximately ten times more resistant to photoreaction than pyrimidines (Smith and Hanawalt 1969). Minor products other than CPD dimers, such as interstrand cross-links, chain breaks, and DNA-protein links occur with much less frequency, typically less than 1/1000 of the number of cyclobutane dimers and hydrates may occur at about 1/10 the frequency of cyclobutane dimers (Setlow and Carrier 1966). Some 80% of pyrimidines and 45% or purines form UV

photoproducts in double-stranded DNA, per studies by Becker and Wang (1989), who also showed that purines only form dimers when adjacent to a pyrimidine doublet. The formation of purine dimers requires transfer of energy in neighboring pyrimidines, and will only occur on the 5' side of the purine base (a 50% probability). Becker and Wang (1985) formulated these simple rules for sequence-dependent DNA photoreactivity:

- 1. Whenever two or more pyrimidine residues are adjacent to one another, photoreactions are observed at both pyrimidines.
- 2. Non-adjacent pyrimidines, surrounded on both sides by purines, exhibit little or no photoreactivity.
- 3. The only purines that readily form UV photoproducts are those that are flanked on their 5' side by two or more contiguous pyrimidine residues.

Table 2 summarizes these rules in terms that can be computed numerically. The adjacent pyrimidines are referred to as doublets and the flanked purines are called triplets. Counting of these doublets is performed exclusively (no doublets are counted twice) and in the order (left to right and top to bottom) as shown in Table 2. Other counting orders are possible, of course, but this straightforward method appears adequate.

Group		Dimer			
Adjacent pyrimidines	TT	TC	СТ	CC	Yes
Purines flanked by doublets	ATT	ACC	ACT	ATC	50% Yes
	GTT	GCC	GCT	GTC	50% Yes
	TTA	CCA	CTA	TCA	50% Yes
	TTG	CCG	CTG	CGT	50% Yes
Surrounded pyrimidines	ATA	ATG	GTA	GTG	No
	ACA	ACG	GCA	GCG	No

Table 2. Potential Dimerization Sequences

A function can be written to sum the potential dimerization values that exist within the physical volume of DNA or RNA. The volume of the sphere will be directly proportional to the genome size, since the nucleic acids are essentially packed tight inside a capsid, and because almost all animal viruses of interest are spherical, ovoid, or possess a spherical capsid atop a tail. The potential dimer density map can be viewed as points collapsed onto a circular cross-section exposed to a collimated beam of UV rays. The volume of the model sphere is equivalent to the base pairs (bp) of the genome (in bp units), and the area of the cross-section is then the cube root of the square of the base pairs, as illustrated in Figure 1.

Figure 1: *The spherical model of DNA has a circular cross-section with a collapsed potential dimerization density map subject to collimated UV rays.*

RNA Virus Model

Single stranded RNA (ssRNA) viruses are the simplest structures to model and these are addressed first. The square root of the sum of the potential dimer values, counted as per Table 1, is used because it was found on analysis that this produces the best fit overall, and so without further theoretical justification the potential dimerization equation for ssRNA viruses is written:

$$D_{v} = \frac{\left[\sum tt + F_{a} \sum \vec{ct} + F_{b} \sum cc + F_{c} \sum \vec{YYU}\right]^{0.5}}{\sqrt[3]{bp^{2}}}$$
(6)

where $D_v = dimerization value$

tt = thymine doublets cc = cytosine doublets ξt = ct and tc (counted both ways, exclusive) YYU = purine w/ adjacent pyrimidine doublet (counted both ways, exclusive) bp = total base pairs F_a, F_b, F_c = dimer proportionality constants Some evidence is available in the literature to allow some starting estimates of the dimer proportionality constants. Per Setlow and Carrier (1966) the average for three bacteria is 1:0.25:0.13. Patrick (1977) suggests ratios of 1:1:1. Unrau (1973) found the ratio was 1:0.5:0.5. Meistrich et al (1970) indicate that in E. coli DNA, the proportions of TT dimers, CT dimers, and CC dimers are in the ratio 1:0.8:0.2, as did Lamola (1973). Table 3 lists 62 of the 70 virus data sets that were used in the ssRNA model, along with the average rate constants and the average D₉₀ values representing 27 single-stranded RNA viruses. These D₉₀ values are not adjusted for UV scatter (per the Table 2 correction factors). Only water-based test results were used since they are the most numerous and they all represent the B-DNA conformation. Data was culled exclusively from the literature and no animal virus or bacteriophage was omitted from consideration. The data sets for MS2 (marked with an asterisk in Table 3), however, were so numerous that although they were all averaged, only seven data points were credited, so as not to give undue weight to this particular phage. The remaining eight data sets for MS2 are listed in the References (Furuse and Watanabe 1971, Sommer et al 2001, Mamane-Gravetz et al 2005, Templeton et al 2006, Nuanualsuwan 2002, Rauth 1965, Shin et al 2005, Meng and Gerba 1996). Only one anomalous outlier was excluded from the 70 data sets (HTLV-1 per Shimizu et al 2004).

Table 3. Rate Constants and D₉₀ Values for RNA Viruses

Viruo		Genome	D ₉₀	UVGI k	Avg k	Avg D ₉₀	Source	
virus		bp	J/m ²	m²/J	m²/J	J/m ²		
		3569	295	0.00780			Ko 2005	
		3569	275	0.00837			Thurston-Enriquez 2003	
		3569	250	0.00920			Battiggelli 1993	
Bacteriophage MS2*	NC_001699	3569	217	0.01060	0.01	237	Simonet 2006	
		3569	217	0.01063			deRodaHusman 2004	
		3569	213	0.01080			Butkus 2004	
		3569	187	0.01230			Oppenheimer 1997	
		5833	237	0.0097			Nomura 1972	
Murine sarcoma virus	NC_001502	5833	144	0.016	0.0111	207	Kelloff 1970	
		5833	299	0.0077			Yoshikura 1971	
		7413	128	0.02			Hill 1970	
		7413	86	0.026837			Havelaar 1987	
Cavaaakiavimua		7413	80	0.02878	0.00004	04	Gerba 2002	
Coxsackievirus	INC_001012	7413	60	0.03840	0.02834	81	Shin 2005	
		7413	95	0.02424			Gerba 2002	
		7413	72	0.03180			Battigelli 1993	
		7345	106	0.02190			Hill 1970	
Echovirus	NC_001897	7345	80	0.02878	0.027859	83	Gerba 2002 (type 1)	
		7345	70	0.03289			Gerba 2002 (type 2)	
		7677	434	0.0053			Nuanualsuwan 2002	
Feline Calicivirus (FCV)	NC_001699	7677	80	0.0288	0.030567	75	Thurston-Enriquez 2003	
		7677	40	0.0576			deRodaHusman 2004	
Canine Calicivirus	NC_004542	8513	67	0.0345	0.0345	67	deRodaHusman 2004	
		7835	50	0.0465			Ross 1971	
Encephalomyocarditis virus	NC_001479	7835	52	0.0446	0.0422	55	Rauth 1965	
		7835	65	0.0355			Zavadova 1968	
	NC_007366-73	13498	20	0.117			Ross 1971	
Influenza A virus		13498	48	0.048	0.10103	23	Hollaender 1944	
		13498	17	0.1381			Abraham 1979	
Vesicular Stomatitis virus (VSV)	NC_001560	11161	13	0.1806			Rauth 1965	
		11161	12	0.19	0 1944	12	Helentjaris 1977	
		11161	100	0.023	0.1011		Bay 1979	
		11161	6	0.384			Shimizu 2004	
Newcastle Disease Virus	NC_002617	15186	8	0.276	0.1636	14	vonBrodorotti 1982	
		15186	45	0.0511			Levinson 1966	
Borna virus	NC_001607	8910	79	0.0292	0.0292	79	Danner 1979	
Rabies virus	NC_001542	11932	10	0.2193	0.2193	10	Weiss 1986	
Rauscher Murine Leukemia virus	NC 001819	8282	157	0.0147	0.00975	236	Kelloff 1970	
	-	8282	480	0.0048			Lovinger 1975	
	NC_005147	30738	/	0.321	0.4400	04	Weiss 1986	
Coronavirus (Inci SARS)	NC_004718	29751	226	0.01	0.1106	21	Kariwa 2004	
	NC_004718	29751	3046	0.000756	0.04400		Darnell 2004	
VEE	NC_001449	11438	55	0.04190	0.04190	55	Smirnov 1992	
Avian Sarcoma virus	NC 008094	3166	155	0.0149	0.01047	220	Owada 1976	
		3166	381	0.00604	0.04000	F 4	Bister 1977	
WEE	NC_003908	11484	54	0.043	0.04300	54	Dubinin 1975	
Rous Sarcoma virus (RSV)	NC_001407	9392	720	0.0032	0.00640	360	Levinson 1966	
Munine Negeringe	NO 000011	9392	240	0.0096	0.02040	70		
Semliki Forest virus	NC_000311	111102	70	0.0304	0.03040	70		
	NC_003215	11442	20	0.0921	0.09210	20	vveiss 1900	
Sindhis virus	NC 001547	11703	113	0.030045	0.03501	66	Wong 2004	
		11703	50	0.0203	0.00001	00	Viang 2004	
		8/10	1700	0.0401			Shimizu 2004	
BLV	NC_001414	8/10	221	0.00120	0.00584	394	Shiinizu 2004	
HI\/_1	NC 001802	0121	280	0.01040	0 00822	280	Voebikura 1090	
Avian Leukosis virus	NC 001408	7286	631	0.00022	0.00022	631		
Measles	NC 001408	1580/	22	0.00000	0.00000	22	DiStefano 1976	
		8332	115	0.0010	0.10010	~~~	Nomura 1972	
Moloney Murine Leukemia virus	NC 001501	8332	370	0.00622	0.01148	201	Guillemain 1981	
		8332	280	0.00822	0.01110		Yoshikura 1989	
Friend Murine Leukemia virus	NC 001362	8323	320	0.00022	0.00720	320	Yoshikura 1971	
	1.10_001002	3020	525	0.0012	0.00120	020		

Figure 2 shows a plot of equation (3) applied to ssRNA viruses that were averaged per species where more than one data set was available. There is a fairly definitive relationship across the entire potential dimerization range. The dimer proportionality constants used to fit equation (3) were: 1:0.1:6:6 (with the fourth constant being 4 for the triplets), or $F_A=0.1$, $F_B=6$, $F_C=6$.

Figure 2: Plot of D_v versus effective D_{90} values for RNA animal viruses and bacteriophages – D_{90} is the effective dose because of correction for scatter. The line represents a curve fit (equation shown on graph), fit to 27 viruses, representing 70 data sets for UV irradiation tests in water.

It is curious to note that the slope of the curve in Figure 2 is positive, contrary to what intuition might suggest. That is, as the number of potential dimerization sequences in a genome increases, UV susceptibility also increases. It is for this reason that D_v is not referred to as a 'probability' value.

DNA Virus Model

Application of the model to double-stranded DNA (dsDNA) viruses requires some modifications to the ssRNA model. Double stranded DNA has a template strand and a complementary strand. The template strand will be accounted for in equation (6) but the complementary strand is not. However, a TT doublet in the complementary strand will be represented by an AA doublet on the template strand, and so counting base pairs can be done with the template strand alone, by interpreting the complementary bases. Incorporating the complementary strand bases produces the following equation:

$$D_{v} = \frac{\left[\sum(tt + aa) + F_{a}\sum(\vec{ct} + \vec{ag}) + F_{b}\sum(cc + gg) + F_{c}\sum(\vec{YU} + \vec{UUY})\right]^{0.5}}{\sqrt[3]{bp^{2}}}$$
(7)

where ct = ct and tc (both ways, exclusive) ag = ag and ga (both ways, exclusive) YYU = YYU and UYY (both ways, exclusive) UUY = YUU and YUU (both ways, exclusive) F_a , F_b , F_c = proportionality constants

Our experts – in R&D, customer care and test lab – support you professionally. Heraeus UV lamps are reliable and precisely matched to the installation and the individual process. This saves energy, maintenance and operating costs. Superior Heraeus Amalgam lamps feature a unique Longlife coating, offering the highest output – even at 185 nm.

Your partner in UV. Because we highlight your success.

USA Heraeus Noblelight LLC Duluth, GA 30096 Phone +1 (770) 418-0707 info@noblelight.net Germany Heraeus Noblelight GmbH 63450 Hanau Phone +49 (6181) 35-9925 hng-disinfection@heraeus.com

www.heraeus-noblelight.com/disinfection

In addition to the doublets and triplets, it was found that the quadruplets onwards also contributed to the DNA model (which they did not for RNA viruses). The effect of the quadruplets, quintuplets, and sextuplets onwards can be characterized by a factor that accounts for hyperchromicity. A given oligonucleotide is hyperchromic if its overall absorbance is higher than the sum of its constituents molecules. Hyperchromicity occurs when multiple pyrimidines are stacked sequentially in clusters of three or more with the effect leveling off at about 8-10 pyrimidines in a row. Although not enough is known about the hyperchromic effect to quantify it exactly, a factor can be added to equation (7) to increase the probability of dimerization of any doublet or triplet whenever 3 or more pyrimidines are found in sequence (Kowalski et al 2009). The value of the factor is estimated by curve-fitting the data to obtain the best fit. In the present model the factor linearly increases the probability of dimerization for doublets and triplets based on how many adjacent pyrimidines are present in the genome, up to a value of 8 in a row. Each contribution can be defined as follows:

tt_n = # of tt doublets within n pyrimidines (template strand)

aa_n = # of aa doublets within n purines
(complement strand)

tc_n = # of tc doublets within n pyrimidines (template strand)

ag_n = # of ag doublets within n purines (complement strand)

ccⁿ = # of cc doublets within n pyrimidines (template strand)

 $gg_n = #$ of gg doublets within n purines (complement strand)

UYY_n = # of UYY triplets within n pyrimidines (template strand)

UUY_n = # of UUY triplets within n purines (complement strand)

The equations for assigning the increase in probability due to hyperchromicity can then be written as follows:

$$tt_{h} = H \sum_{n=3}^{8} \left(n \cdot tt_{n} \right) \tag{8}$$

$$aa_{h} = H \sum_{n=3}^{8} \left(n \cdot aa_{n} \right) \tag{9}$$

$$tc_h = H \sum_{n=3}^{8} \left(n \cdot tc_n \right) \tag{10}$$

$$ag_{h} = H \sum_{n=3}^{8} \left(n \cdot ag_{n} \right) \tag{11}$$

$$cc_h = H \sum_{n=3}^{8} \left(n \cdot cc_n \right) \tag{12}$$

$$gg_h = H \sum_{n=3}^{8} \left(n \cdot gg_n \right) \tag{13}$$

$$UYY_{h} = H \sum_{n=3}^{8} \left(n \cdot UYY_{n} \right)$$
(14)

$$UUY_{h} = H \sum_{n=3}^{8} \left(n \cdot UUY_{n} \right)$$
(15)

where $tt_h =$ hyperchromic multiplier, or increase in probability of dimerization from all multiple sequences of 3 to 8 pyrimidines. Similar for all other hyperchromic constants aah, tch, agh, cch, ggh, UYYh, and UUYh.

In equations (8) through (15), hyperchromic regions above 8 are neglected since such extended regions tend to be rare, and will be partly accounted for by these factors (i.e. any region of 8 pyrimidines in a row will contain a region of 8 in a row). Equation (5) is therefore re-written as follows:

The proportionality constants represent the relative proportions of each type of dimer, which differ in RNA and DNA. Applying this model to DNA viruses produces the result shown in Figure 3. The dimer ratios for this curve fit were 1:0.2:40:18 (F_A=0.2, F_B=40, F_C=18), with a hyperchromicity factor H = 0.67 (meaning a multiplier of 1.67). The pattern of increasing D₉₀ with increasing values of D_v seems fairly definitive. Table 4 lists 67 of the 77 virus data sets that were used in the ssRNA model, along with the average rate constants and the average D₉₀ values representing 27 single-stranded RNA viruses. Viruses marked with an asterisk (*) indicate that additional data sets were used to compute the average rate constants - a maximum of 7 data sets were used per virus so as not to give undue weight to any virus. The remaining data sets are given in the References (Rainbow and Mak 1973 & 1970, Linden et al 2007, Wang et al 2004, Bossart et al 1978, Bourre et al 1989). Two additional data sets for T7 (MP and LP values) were accounted for in Table 4 (k=0.056 m²/l and k=0.061 m²/I) but not listed (Bohrerova et al 2008). The D₉₀ values in Table 4 are uncorrected for UV scatter. No available data was omitted from Figure 3 and no outliers were excluded.

Table 4. Rate Constants and D₉₀ Values for DNA Viruses

Virue		Genome	D ₉₀	UVGI k	Avg k	Avg D ₉₀	Sourco	
Virus	NCBIID#	bp	J/m ²	m²/J	m²/J	J/m ²	Source	
Adenovirus Type 1	AC 000017	35997	299	0.0077	0.00714	322	Battiggelli 1993	
Adenovirus Type T	AC_000017	55557	350	0.0066	0.007 14	522	Nwachuku 2005	
Adenovirus Type 2*	AC 000007	35937	300	0.0077	0.00691	333	Shin 2005	
			400	0.0058			Gerba 2002	
Adenovirus Type 5*	AC 000008	35938	400	0.0058	0.00441	522	Durance 2005	
Adopovirus Type 40	_ NC_001454	3/21/	720	0.0032	0.00422	546	Nwachuku 2005	
Adenovirus Type 40	NC_001454	34214	57	0.0042	0.00422	540	Curreduce 1081	
			70	0.0403	0.02953		Harm 1961	
Coliphage lambda	NC_001416	48502	72	0.0320		78	Weigle 1953	
			184	0.0125			Davidovich 1991	
			1599	0.0014			Seemayer 1973	
			1439	0.0016			Cornellis 1981	
			1245	0.0019	1		Bockstahler 1977	
Simian virus 40*	NC_001669	5243	886	0.0026	0.02768	83	Defendi 1967	
			650	0.0035			Sarasin 1978	
			443	0.0052			Aaronson 1970	
			23	0.1004			Cornellis 1982	
			40	0.0576			Battigelli 1993	
			45	0.0512			Windomeone 1002	
Hepatitis A virus	NC_001489	7478	92	0.0401	0.03513	66	Wedenmann 1993	
			98	0.0230			Wilson 1992	
			307	0.0075			Nuanualsuwan 2002	
			100	0.0230			Bockstahler 1976	
	NC_001806		110	0.0209	0.06262	37	Selsky 1978	
Herpes simplex virus Type 1		152261	25	0.0933			Lytle 1971	
			35	0.0654			Ross 1971	
			21	0.1105			Albrecht 1974	
Coliphage PRD1	NC_001421	14925	20	0.1150	0.115	20	Shin 2005	
			7	0.3490	0.12454		Galasso 1965	
			14	0.1604		18	Ross 19/1	
Vaccinia virus*	NC_006998	108350	10	0.1279			Kieln 1994	
		198350	22	0.1050			Zavadova 1971 Rauth 1965	
			715	0.0023			Davidovich 1991	
			677	0.0034			Collier 1955	
			7	0.3450		13	Otaki 2003	
			14	0.1685			Ross 1971	
Coliphage T4	NC_000866	168900	15	0.1540	0.1709		Harm 1968	
			29	0.0800			Templeton 2006	
			22	0.1070			Winkler 1962	
B. subtilis phage SP	NC 004166	44010	100	0.0230	0.01742	132	Freeman 1987	
	_ NO_005040	140404	195	0.0118	0.0070	04	Freeman 1987	
Pseudorables (PRV)	NC_005946	143461	34	0.0676	0.0676	34	Ross 19/1	
HP1c1 phage	NC_004005	230270	40	0.0500	0.05	40	Snanley 1982	
Fauine Herpes virus	NC 005946	150224	25	0.0970	0.0370	25	Weiss 1986	
Frog virus 3	NC 005946	105903	25	0.0921	0.0921	25	Martin 1982	
			6	0.3697		-	Hotz 1971	
Coliphage T1	NC_005833	48836	38	0.0600	0.163	14	Harm 1968	
			40	0.0580			Fluke 1949 (265 nm)	
			95	0.0242			Benzer 1952	
Coliphage T7	NC 001604	39937	23	0.1000	0.08192	25	Ronto 1992	
			53	0.0432	0.000.00_		Peak 1978 (B)	
				0.2047			Peak 1978 (Bs-1)	
			480	0.0048			vander Eb 1967	
Polyomavirus	NC_001699	5130	606	0.0030	0.0071	324	Delenal 1967	
			501	0.0033			Latariet 1067	
			16	0.1430			David 1973	
Mycobacterium phage D29	NC 001348	49136	324	0.0071	0.05623	41	Sellers 1970 (D29)	
,			268	0.0086			Sellers 1970 (D29A)	
			40	0.0576			Wolff 1973	
	NC 001709		41	0.0565	0.06560	35	Ross 1971	
Interpes simplex virus Type 2	140_001/90	1,047,40	75	0.0307	0.00009	30	Ryan 1986	
			20	0.1180			Albrecht 1974	

Figure 3: Plot of D_v versus effective UV dose for DNA viruses – the D_{90} is the effective dose because it has been corrected for UV scattering. The line represents a curve fit (equation shown on graph). A total of 77 data sets were used, weighted in the curve fit of the 22 viruses.

Table 5 compares the published estimates of the relative proportions of the various dimer types with the constants used in the previous models. The factors shown in the table are the three constants in equations (7) and (16). The best fit constants are those that were used in the model in the previous Figures. The zero values assumed for the constants that were not given by the indicated sources did not have any great influence of the R² value. The hyperchromicity factor was zero for all RNA models, and kept at 0.67 for all DNA models. The results for the DNA model are shown with and without corrections for UV scattering, which make about an 12% difference in the DNA model, but had only a 1% difference on the RNA model, as would be expected from their size. Hyperchromicity had no effect on the RNA model but produced a 1% improvement in the DNA model.

Dimor	Dimer Dimer Factor		Setlow	Meistrich	Lamola	Unrau	Patrick	Bes	t Fit
Dimer	Ratio	1 actor	1968	1970	1973	1973	1977	RNA	DNA
TT	1	1	1	1	1	1	1	1	1
CT	CT/TT	F _A	0.25	0.8	0.8	0.5	1	0.1	0.05
CC	CC/TT	FB	0.13	0.2	0.2	0.5	1	6	40
UYY	UYY/TT	Fc	0	0	0	0	0	6	18
RNA	A Model R ²	(NS)	61%	60%	60%	64%	62%	66%	-
R	NA Model	R ²	59%	61%	61%	64%	62%	67%	-
Hyper	chromicity	Н	0.67	0.67	0.67	0.67	0.67	0	0.67
DNA	A Model R ²	(NS)	33%	33%	33%	36%	39%	-	50%
DN/	A Model R ²	(NH)	41%	44%	44%	48%	51%	-	61%
D	NA Model	R ²	43%	46%	46%	50%	53%	-	62%

(NH): No hyperchromicity. (NS): UV scattering not included.

CONCLUSIONS

A mathematical model has been presented for the prediction of UV susceptibility of RNA and DNA viruses based on base-counting of potential dimers in the virus genomes. The results correlate well with available data on UV rate constants. This model has been used to estimate the UV rate constants for a range of pathogenic animal viruses and bioweapon agents for which complete genomes were available from the NCBI database and

Table 6 summarizes these predictions. Minimum and maximum D_{90} values are listed that are within the confidence intervals (CIs) of 86% for DNA viruses and 93% for RNA viruses. These CIs represent only the intervals of the data as summarized and do not include any uncertainty in the original 147 data sets, most of which included no error analysis. By establishing a theoretical basis for the UV susceptibility of viruses in water, it becomes possible to link them to airborne rate constants – water-based rate constants represent a limit towards which airborne rate constants converge in high humidity (Peccia et al 2001). For additional information on genomic modeling see Kowalski et al (2009) and Kowalski (2009).

REFERENCES

- Bergstrom, D. E.; Inoue, H.; Reddy, P. A. (1982) "Pyrido[2,3d]pyrimidine Nucleosides, Synthesis via Cyclization of C-5-Substituted Cytidines," *Journal of Organic Chemistry* 47, 2174-2178.
- Aaronson SA. 1970. Effect of ultraviolet irradiation on the survival of simian virus 40 functions in human and mouse cells. J Virol 6(4):393-399.
- Abraham G. 1979. The effect of ultraviolet radiation on the primary transcription of Influenza virus messenger RNAs. Virol 97:177-182.
- Albrecht T. 1974. Multiplicity reactivation of human cytomegalovirus inactivated by ultra-violet light. Biochim Biophys Acta 905:227-230.
- Battigelli D, Sobsey M, Lobe D. 1993. The inactivation of hepatitis A virus and other model viruses by UV irradiation. Wat Sci Technol 27:339.
- Bay PHS, Reichman ME. 1979. UV inactivation of the biological activity of defective interfering particles generated by Vesicular Stomatitis virus. J Virol 32(3):876-884.
- Becker MM, Wang Z. 1989. Origin of ultraviolet damage in DNA. J Mol Biol 210:429-438.
- Benzer S. 1952. Resistance to ultraviolet light as an index to the reproduction of bacteriophage. J Bact 63:59-72.
- Bister K, Varmus HE, Stavnezer E, Hunter E, Vogt PK. 1977. Biological and biochemical studies on the inactivation of Avian Oncoviruses by ultraviolet irradiation. Virol(689-704).

lues
ļ

Virus	Type	NCBI #s	Dia.	Genome	Dimer Prob	UV k	UV Dose D ₉₀ , J/m ²		
Virus	Type	NOD1#3	μm	bp	D _v	m²/J	Mean	Min	Max
Camelpox	DNA	NC_003391	0.307	205719	0.3968	0.1280	18	9.6	40
Canine Distemper	DNA	NC_001921	0.173	15690	0.6958	0.0182	126	38	442
Chikungunya	RNA	NC_004162	0.06	11826	0.2161	0.0763	30	9.7	66
Crimean-Congo	RNA	NC_005300,01,02	0.09	19146	0.1947	0.1261	18	6.6	37
Dengue Fever Type 1	RNA	NC_001477	0.045	10735	0.2117	0.0996	23	7.5	49
Dengue Fever Type 2	RNA	NC_001474	0.045	10723	0.2080	0.1146	20	6.9	44
Dengue Fever Type 3	RNA	NC_001475	0.045	10707	0.2091	0.1113	21	7.2	45
Dengue Fever Type 4	RNA	NC_002640	0.045	10649	0.2125	0.0946	24	7.7	51
Ebola (Reston)	RNA	NC_004161	0.09	18891	0.2043	0.0957	24	8.3	51
Ebola (Sudan)	RNA	NC_006432	0.09	18875	0.2066	0.0867	27	8.8	53
Ebola (Zaire)	RNA	NC_002549	0.09	18959	0.2035	0.0991	23	8.3	50
EEE	RNA	NC_003899	0.062	11675	0.2222	0.0613	38	12	83
Fowl Adenovirus A	DNA	NC_001720	0.08	43804	0.6479	0.0349	66	33	220
Fowlpox	DNA	NC_002188	0.307	288539	0.3652	0.1564	15	7.7	30
Goatpox	DNA	NC_004003	0.307	149599	0.3987	0.1232	19	10	40
Hantaan	RNA	NC_005218,19,22	0.095	11845	0.2086	0.0811	28	9.9	63
Hepatitis C	DNA	NC_009827	0.06	9628	0.8542	0.0099	233	110	1097
Herpesvirus Type 4	DNA	NC_009334	0.122	172764	0.5879	0.0436	53	25	157
Herpesvirus Type 6A	DNA	NC_001664	0.1	159322	0.4626	0.1103	21	11	50
Herpesvirus Type 7	DNA	NC_001716	0.155	153080	0.4459	0.1024	22	12	49
Japanese Encephalitis	RNA	NC_001437	0.045	10976	0.2163	0.0860	27	8.9	61
Junin	RNA	NC_005080,81	0.12	10525	0.2304	0.0341	68	21	154
Lassa	RNA	NC_004296,97	0.12	10681	0.2294	0.0372	62	20	107
LCM	RNA	NC_004291,94	0.126	10056	0.2226	0.0430	54	17	118
Machupo	RNA	NC_005079,78	0.11	10635	0.2326	0.0334	69	22	156
Marburg	RNA	NC_001608	0.039	19111	0.1999	0.1654	14	5.0	30
Monkeypox	DNA	NC_003310	0.307	196858	0.3998	0.1232	19	10	40
Mousepox	DNA	NC_004105	0.307	209771	0.3951	0.1247	18	9.8	40
Mumps	RNA	NC_002200	0.245	15384	0.2133	0.0486	47	15	97
Myxoma	DNA	NC_001132	0.25	161766	0.4451	0.0924	25	13	54
Norwalk	RNA	NC_001959	0.032	7654	0.2416	0.0410	56	14	132
Papillomavirus	DNA	NC_001691	0.055	7184	0.7302	0.0236	98	45	369
Parainfluenza Type 1	RNA	NC_003461	0.194	15600	0.1961	0.0968	24	8.6	50
Respiratory Syncytial	RNA	NC_001803	0.19	15225	0.2006	0.0823	28	9.7	58
Rhinovirus B	RNA	NC_001490	0.023	7212	0.2355	0.0526	44	12	99
Rhinovirus C	RNA	NC_009996	0.023	7099	0.2428	0.0417	55	15	125
Rubella	RNA	NC_001545	0.061	9755	0.2634	0.0152	152	37	345
Sendai	RNA	NC_001522	0.194	15384	0.2040	0.0740	31	11	66
Smallpox	DNA	NC_001611	0.307	185578	0.4041	0.1202	19	10	42
Turkey Adenovirus A	DNA	NC_001958	0.08	26263	0.6030	0.0473	49	24	148
Usutu	RNA	NC_006551	0.051	11066	0.2206	0.0693	33	10	73
Yellow Fever	RNA	NC_002031	0.045	10862	0.2151	0.0860	27	8.5	56

- Bockstahler LE, Lytle CD, Stafford JE, Haynes KF. 1976. Ultraviolet enhanced reactivation of a human virus: Effect of delayed infection. Mutat Res 35:189-198.
- Bohren C, Huffman D. 1983. Absorption and Scattering of Light by Small Particles. New York: Wiley & Sons.
- Bohrerova Z, Shemer H, Lantis R, Impellitteri C, Linden K. 2008. Comparative disinfection efficiency of pulsed and continuous-wave UV irradiation technologies. Wat Res 42:2975-2982.
- Bossart W, Nuss DL, Paoletti E. 1978. Effect of UV irradiation on the expression of Vaccinia virus gene products synthesized in a cell-free system coupling transcription and translation. J Virol 26(3):673-680.
- Bourre F, Benoit A, Sarasin A. 1989. Respective Roles of Pyrimidine Dimer and Pyrimidine (6-4) Pyrimidone Photoproducts in UV Mutagenesis of Simian Virus 40 DNA in Mammalian Cells. J Virol 63(11):4520-4524.
- Butkus MA, Labare MP, Starke JA, Moon K, Talbot M. 2004. Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Appl Environ Microbiol 70(5):2848-2853.
- Collier LH, McClean D, Vallet L. 1955. The antigenicity of ultraviolet irradiated vaccinia virus. J Hyg 53(4):513-534.
- Cornelis JJ, Su ZZ, Ward DC, Rommelaere J. 1981. Indirect induction of mutagenesis of intact parvovirus H-1 in mammalian cells treated with UV light or with UV-irradiated H-1 or simian virus 40. Proc Natl Acad Sci 78(7):4480-4484.
- Danner K, Mayr A. 1979. In vitro studies on Borna virus. II. Properties of the virus. Arch Virol 61:261-271.
- Darnell MER, Subbarao K, Feinstone SM, Taylor DR. 2004. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Meth 121:85-91.
- David HL. 1973. Response of mycobacteria to ultraviolet radiation. Am Rev Resp Dis 108:1175-1184.
- Davidovich IA, Kishchenko GP. 1991. The shape of the survival curves in the inactivation of viruses. Mol Gen, Microb & Virol 6:13-16.
- de Roda Husman AM, Bijkerk P, Lodder W, Berg Hvd, Pribil W, Cabaj A, Gehringer P, Sommer R, Duizer E. 2004. Calicivirus Inactivation by Nonionizing (253.7-Nanometer-Wavelength [UV]) and Ionizing (Gamma) Radiation. Appl Environ Microbiol 70(9):5089-5093.
- DeFendi V, Jensen F. 1967. Oncogenicity by DNA tumor viruses. Science 157:703-705.
- DiStefano R, Burgio G, Ammatuna P, Sinatra A, Chiarini A. 1976. Thermal and ultraviolet inactivation of plaque purified measles virus clones. G Batteriol Virol Immunol 69:3-11.
- Dubunin NP, Zasukhina GD, Nesmashnova VA, Lvova GN. 1975. Spontaneous and Induced Mutagenesis in Western Equine Encephalomyelitis Virus in Chick Embryo Cells with Different Repair Activity. Proc Nat Acad Sci 72(1):386-388.
- Durance CS, Hoffman R, Andrews RC, Brown M. 2005. Applications of Ultraviolet Light for Inactivation of Adenovirus. : University of Toronto Department of Civil Engineering.

* Life claim testing done under laboratory conditions. Actual performances depend on operating conditions.

- Fluke DJ, Pollard EC. 1949. Ultraviolet action spectrum of T1 bacteriophage. Science 110:274-275.
- Freeman AG, Schweikart KM, Larcom LL. 1987. Effect of ultraviolet radiation on the Bacillus subtilis phages SPO2c12, SPP1, and phi 29 and their DNAs. Mut Res 184(3):187-196.
- Furuse K, Watanabe I. 1971. Effects of ultraviolet light (UV) irradiation on RNA phage in H2O and in D2O. Virol 46:171-172.
- Galasso GJ, Sharp DG. 1965. Effect of particle aggregation on the survival of irradiated Vaccinia virus. | Bact 90(4):1138-1142.
- Gerba C, Gramos DM, Nwachuku N. 2002. Comparative inactivation of enteroviruses and adenovirus 2 by UV light. Appl Environ Microbiol 68(10):5167-5169.
- Golde A, Latarjet R, Vigier P. 1961. Isotypical interference in vitro by Rous virus inactivated by ultraviolet rays. C R Acad Sci (Paris) 253:2782-2784.
- Guillemain B, Mamoun R, Astier T, Duplan J. 1981. Mechanisms of early and late polykaryocytosis induced by the Bovine Leukaemia virus. | Gen Virol 57:227-231.
- Gurzadyan GG, Nikogosyan DN, Kryukov PG, Letokhov VS, Balmukhanov TS, Belogurov AA, Zavilgelskij GB. 1981. Mechanism of high power picosecond laser UV inactivation of viruses and bacterial plasmids. Photochem Photobiol 33:835-838.

- Harm W. 1961. Gene-controlled reactivation of ultravioletirradiated bacteriophage. J Cell Comp Physiol Suppl 58(1):169.
- Harm W. 1968. Effects of dose fractionation on ultraviolet survival of Escherichia coli. Photochem & Photobiol 7:73-86.
- Havelaar AH. 1987. Virus, bacteriophages and water purification. Vet Q 9(4):356-360.
- Helentjaris T, Ehrenfeld E. 1977. Inhibition of host cell protein synthesis by UV-inactivated poliovirus. J Virol 21(1):259-267.
- Hill WF, Hamblet FE, Benton WH, Akin EW. 1970. Ultraviolet devitalization of eight selected enteric viruses in estuarine water. Appl Microb 19(5):805-812.
- Hollaender A, Oliphant JW. 1944. The inactivating effect of monochromatic ultraviolet radiation on influenza virus. | Bact 48(4):447-454.
- Hotz G, Mauser R, Walser R. 1971. Infectious DNA from coliphage T1. 3. The occurrence of single-strand breaks in stored, thermally-treated and UV-irradiated molecules. Int J Radiat Biol Relat Stud Phys Chem Med 19:519-536.
- Kariwa H, Fujii N, Takashima I. 2004. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions, and chemical reagents. Jpn J Vet Res 52(3):105-112.

Cost effective UV (ultraviolet) disinfection solutions

More than 15 years experience and global competence with UV installations

• World leader in ultraviolet (UV) technology

- Reliable inactivation of bacteria, viruses and parasites
- Lowest operational costs
- Easy installation and operation
- Fully certified, meeting all international requirements Robust design

UV LIT EUROPE Kerkhofstraat 21, 5554 HG Valkenswaard E. info@lit-uv.eu The Netherlands

T. +31 (0) 40 224 07 30 F. +31 (0) 842 24 68 43 I. www.lit-uv.eu

FION SOL

- Kelloff G, Aaronson SA, Gilden RV. 1970. Inactivation of Murine Sarcoma and Leukemia viruses by ultra-violet irradiation. Virol 42:1133-1135.
- Klein B, Filon AR, vanZeeland AA, vanderEb AJ. 1994. Survival of UV-irradiated vaccinia virus in normal and xeroderma pigmentosum fibroblasts; evidence for repair of UVdamaged viral DNA. Mutat Res 307(1):25-32.
- Ko G, Cromenas TL, Sobsey MD. 2005. UV inactivation of adenovirus type 41 measured by cell culture mRNA RT-PCR. Wat Res 39:3643-3649.
- Kowalski WJ. 2006. Aerobiological Engineering Handbook: A Guide to Airborne Disease Control Technologies. New York: McGraw-Hill.
- Kowalski WJ. 2009. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. New York: Springer Verlag.
- Kowalski W, Bahnfleth W, Hernandez M. A Genomic Model for the Prediction of Ultraviolet Inactivation Rate Constants for RNA and DNA Viruses; 2009 May 4-5; Boston, MA. International Ultraviolet Association.
- Lamola A. 1973. Photochemistry and structure in nucleic acids. Pure Appl Chem 34(2):281-303.
- Latarjet R, Cramer R, Montagnier L. 1967. Inactivation, by UV-, X-, and gamma-radiations, of the infecting and transforming capacities of polyoma virus. Virol 33:104-111.
- Lee JE, Zoh KD, Ko GP. 2008. Inactivation and UV disinfection of Murine Norovirus with TiO2 under various environmental conditions. Appl Environ Microbiol 74(7):2111-2117.
- Levinson W, Rubin R. 1966. Radiation studies of avian tumor viruses and of Newcastle disease virus. Virol 28:533-542.
- Linden KG, Thurston J, Schaefer R, Malley JP. 2007. Enhanced UV inactivation of Adenoviruses under polychromatic UV lamps. Appl Environ Microbiol 73(23):7571-7574.
- Lovinger GG, Ling HP, Gilden RV, Hatanaka M. 1975. Effect of UV light on RNA directed DNA polymerase activity of murine oncornaviruses. J Virol 15:1273.
- Lytle CD. 1971. Host-cell reactivation in mammalian cells. 1. Survival of ultra-violet-irradiated herpes virus in different cell-lines. Int J Radiat Biol Relat Stud Phys Chem Med 19(4):329-337.
- Mamane-Gravetz H, Linden KG, Cabaj A, Sommer R. 2005. Spectral sensitivity of Bacillus subtilis spores and MS2 coliphage for validation testing of ultraviolet reactors for water disinfection. Environ Sci Technol 39:7845-7852.
- Martin JP, Aubertin AM, Kirn A. 1982. Expression of Frog Virus 3 early genes after ultraviolet irradiation. Virol 122:402-410.
- Meistrich M, Lamola AA, Gabbay E. 1970. Sensitized photoinactivation of bacteriophage T4. Photochem Photobiol 11(3):169-178.
- Meng QS, Gerba CP. 1996. Comparative inactivation of enteric Adenoviruses, Poliovirus and coliphages by ultraviolet irradiation. Wat Res 30(11):2665-2668.

- NCBI. 2009. Entrez Genome. : National Center for Biotechnology Information.
- Nomura S, Bassin RH, Turner W, Haapala DK, Fischinger PJ. 1972. Ultraviolet inactivation of Maloney Leukaemia Virus: Relative target size required for virus replication and rescue of 'defective' Murine Sarcoma virus. J Gen Virol 14:213-217.
- Nuanualsuwan S, Mariam T, Himathongkham S, Cliver DO. 2002. Ultraviolet inactivation of Feline Calicivirus, Human Enteric Viruses, and coliphages. Photochem Photobiol 76(4):406-410.
- Nwachuku N, Gerba CP, Oswald A, Mashadi FD. 2005. Comparative Inactivation of Adenovirus Serotypes by UV Light Disinfection. Appl Environ Microbiol 71(9):5633-5636.
- Oppenheimer JA, Jacangelo JG, Laine J-M, Hoagland JE. 1997. Testing the equivalency of ultraviolet light and chlorine for disinfection of wastewater to reclamation standards. Wat Environ Res 69(1):14-24.
- Otaki M, Okuda A, Tajima K, Iwasaki T, Kinoshita S, Ohgaki S. 2003. Inactivation differences of microorganisms by low pressure UV and pulsed xenon lamps. Wat Sci Technol 47(3):185-190.
- Owada M, Ihara S, Toyoshima K. 1976. Ultraviolet inactivation of Avian Sarcoma viruses: Biological and Biochemical analysis. Virol 69:710-718.
- Patrick MH. 1977. Studies on thymine-derived UV photoproducts in DNA I. Formation and biological role of pyrimidine adducts in DNA. Photochem Photobiol 25(4):357-372.
- Peak MJ, Peak JG. 1978. Action spectra for the ultraviolet and visible light inactivation of phage T7: Effect of host-cell reactivation. Radiat Res 76:325-330.
- Peccia J, Werth HM, Miller S, Hernandez M. 2001. Effects of relative humidity on the ultraviolet induced inactivation of airborne bacteria. Aerosol Sci & Technol 35:728-740.
- Prahl S. 2009. Mie Scattering Calculator. : Oregon Medical Laser Center.
- Rainbow AJ, Mak S. 1970. Functional Heterogeneity of Virions in Human Adenovirus Types 2 and 12. J Vir 5:188-193.
- Rainbow AJ, Mak S. 1973. DNA damage and biological function of human adenovirus after U.V. irradiation. Int J Radiat Biol 24(1):59-72.
- Rauth AM. 1965. The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light. Biophysical Journal 5:257-273.
- Ronto G, Gaspar S, Berces A. 1992. Phages T7 in biological UV dose measurement. Photochem Photobiol 12:285-294.
- Ross LJN, Wildy P, Cameron KR. 1971. Formation of small plaques by Herpes viruses irradiated with ultraviolet light. Virol 45:808-812.

- Ryan D, Rainbow A. 1986. Comparative studies of host-cell reactivation, cellular capacity and enahnced reactivation of herpes simplex virus in normal, xeroderma pigmentosum and Cockayne syndrome fibroblasts. Mut Res 166:99-111.
- Sarasin AR, Hanawalt PC. 1978. Carcinogens enhance survival of UV-irradiated simian virus 40 in treated monkey kidney cells: Induction of a recovery pathway? Proc Natl Acad Sci 75(1):356-350.
- Scholes CP, Hutchinson F, Hales HB. 1967. Ultraviolet-induced damage to DNA independent of molecular weight. J Mol Biol 24:471-474.
- Seemayer NH. 1973. Analysis of minimal functions of Simian virus 40. J Virol 12(6):1265-1271.
- Sellers MI, Nakamura R, Tokunaga T. 1970. The effects of ultraviolet irradiation on Mycobacteriophages and their infectious DNAs. J Gen Virol 7(3):233-247.
- Selsky C, Weichselbaum R, Little JB. 1978. Defective host-cell reactivation of UV-irradiated Herpes Simplex virus by Bllom's Syndrome skin fibroblasts. In: Hanawalt PC, Friedberg EC, Cox CF, editors. DNA Repair Mechanisms. New York: Academic Press.
- Setlow RB, Carrier WL. 1966. Pyrimidine dimers in ultravioletirradiated DNA's. J Mol Biol 17:237-254.
- Setlow J, Boling M. 1972. Bacteriophage of Haemophilus influenzae II. Repair of ultraviolet-irradiated phage DNA and the capacity of irradiated cells to make phage. J Mol Biol 63:349-362.
- Shanley JD. 1982. Ultraviolet irradiation of Murine Cytomegalovirus. J Gen Virol 63:251-254.
- Shimizu A, Shimizu N, Tanaka A, Jinno-Oue A, Roy B, Shinagawa M, Ishikawa O, Hoshino H. 2004. Human T-cell leukaemia virus type 1 is highly sensitive to UV-C light. J Gen Virol 85:2397-2406.
- Shin G, Linden KG, Sobsey MD. 2005. Low pressure ultraviolet inactivation of pathogenic enteric viruses and bacteriophages. J Environ Eng Sci 4(Supp 1):S7-S11.
- Simonet J, Gantzer C. 2006. Inactivation and genome degradation of poliovirus 1 and F-specific RNA phages and degradation of their genomes by UV irradiation at 254 nanometers. Appl Environ Microbiol 72(12):7671-7677.
- Smirnov Y, Kapitulez S, Kaverin N. 1992. Effects of UVirradiation upon Venezuelan equine encephalomyelitis virus. Virus Res 22(2):151-158.
- Smith KC, Hanawalt PC. 1969. Molecular Photobiology: Inactivation and Recovery. New York: Academic Press.
- Sommer R, Pribil W, Appelt S, Gehringer P, Eschweiler H, Leth H, Cabaj A, Haider T. 2001. Inactivation of bacteriophages in water by means of non-ionizing (UV 253.7nm) and ionizing (gamma) radiation: A comparative approach. Wat Res 35(13):3109-3116.
- Templeton MR, Andrews RC, Hofmann R. 2006. Impact of iron particles in groundwater on the UV inactivation of

bacteriophages MS2 and T4. J Appl Microbiol 101(3):732-741.

- Thurston-Enriquez JA, Haas CN, Jacangelo J, Riley K, Gerba CP. 2003. Inactivation of Feline calicivirus and Adenovirus Type 40 by UV radiation. Appl Environ Microbiol 69(1):577-582.
- Unrau P, Wheatcroft R, Cox B, Olive T. 1973. The formation of pyrimidine dimers in the DNA of fungi and bacteria. Biochim Biophys Acta 312:626-632.
- van der Eb AJ, Cohen JA. 1967. The effect of UV-irradiation on the plaque-forming ability of single- and double-stranded polyoma virus DNA. Biochem Biophys Res Comm 28(2):284-293.
- vandeHulst H. 1957. Light Scattering by Small Particles. New York: Chapman & Hall, Ltd.
- vonBrodrotti HS, Mahnel H. 1982. Comparative studies on susceptibility of viruses to ultraviolet rays. Zbl Vet Med B 29:129-136.
- Wang C-H, Tschen S-Y, Flehmig B. 1995. Antigenicity of hepatitis A virus after ultra-violet irradiation. Vaccine 13(9):835-840.
- Wang J, Mauser A, Chao SF, Remington K, Treckmann R, Kaiser K, Pifat D, Hotta J. 2004. Virus inactivation and protein recovery in a novel ultraviolet-C reactor. Vox Sang 86(4):230-238.
- Weidenmann A, Fischer B, Straub U, Wang C-H, Flehmig B, Schoenen D. 1993. Disinfection of Hepatitis A virus and MS-2 coliphage in water by ultraviolet irradiation: Comparison of UV-susceptibility. Wat Sci Technol 27(3-4):335-338.
- Weigle JJ. 1953. Induction of mutations in a bacterial virus. Proc Natl Acad Sci USA 39:628.
- Weiss M, Horzinek MC. 1986. Resistance of Berne virus to physical and chemical treatment. Vet Microbiol 11:41-49.
- Wilson B, Roessler P, vanDellen E, Abbaszadegan M, Gerba C. Coliphage MS-2 as a UV water disinfection efficacy test surrogate for bacterial and viral pathogens. In: Association AWW, editor; 1992; Denver, CO.
- Winkler U, Johns HE, Kellenberger E. 1962. Comparative study of some properties of bacteriophage T4D irradiated with monochromatic ultraviolet light. Virol 18:343-358.
- Wolff MH, Schneweis KE. 1973. UV inactivation of herpes simplex viruses, types 1 and 2. Zentralbl Bakteriol 223(4):470-477.
- Yoshikura H. 1971. Ultraviolet inactivation of murine leukemia and sarcoma viruses. Int J Cancer 7:131-140.
- Yoshikura H. 1989. Thermostability of Human Immunodeficiency virus (HIV-1) in a Liquid Matrix is far higher than that of an ecotropic Murine Leukemia virus. Jpn J Cancer Res 80:1-5.
- Zavadova Z, Gresland L, Rosenbergova M. 1968. Inactivation of single- and double-stranded ribonucleic acid of encephalomyocarditis virus by ultraviolet light. Acta Virol 12:515-522.